Fekete’s lemma was proved by Pólya and Szegő. A historical note, not related to Fekete’s lemma thought, which I did not know myself before reading the biography of Szegő and I find it for some reason interesting to know:
At the age of 15, the young John von Neumann, recognised as a mathematical prodigy, was sent to study advanced calculus under Szegő. On their first meeting, Szegő was so astounded by von Neumann’s mathematical talent and speed that he was brought to tears. Szegő subsequently visited the von Neumann house twice a week to tutor the child prodigy. Some of von Neumann’s instant solutions to the problems in calculus posed by Szegő, sketched out with his father’s stationary, are now on display at the von Neumann archive at Budapest.
Fekete’s lemma is a very important lemma, which is used to prove that a certain limit exists. The only thing to be checked is the super-additivity property of the function of interest. Let’s be more exact. Let be the set of natural numbers and
the set of non-negative reals. We shall call a function f super-additive if
for every
.
Fekete’s lemma: For every super-additive function the ratio
tends to a limit as
.
Proof Sketch: Let . We distinguish two cases,
.
Case 1, : Fix
. We pick an
(clearly there exists such one) such that that
. Let
be a sufficiently large constant (depending on
and $n \geq n_0$. Then
and by the super-additivity property we obtain that
. Letting latex $\epsilon \rightarrow 0$ we see that
.
Case 2, . Left as an exercise. Mimick the argument above.
QED
As an exercise, try to prove the following by applying the Lemma above.
Exercise: Let =k-color Ramsey number of triangles. Prove that
tends to a limit.